
The Signal & the Nonce
Tracing ASIC Fingerprints to Reshape
Our Understanding of Bitcoin Mining

By Karim Helmy, Lucas Nuzzi, Alex Mead, Kyle Waters,

and the Coin Metrics Team

https://twitter.com/karimhelpme
https://twitter.com/LucasNuzzi
https://twitter.com/alexrmead
https://twitter.com/kylewaters_
https://twitter.com/coinmetrics


summary

This paper introduces a methodology for determining 

the market share of every major Bitcoin mining machine, 

or ASIC, by analyzing nonce patterns and incorporating 

data sourced from real-world ASICs. Using novel data 

produced by our analysis, we can generate estimates to 

Bitcoin's electricity consumption and network efficiency 

with far greater accuracy over the existing body of 

research. By knowing the ASIC distribution over time, 

we can estimate not only the average efficiency, which is 

crucial for miners' competitiveness but also the e-waste 

generated by Bitcoin mining, a contentious issue in its 

own right. This approach paves the way for us to extract 

new insights into some of Bitcoin's most critical issues.



Introduction

Blockchains are often hailed for their transparency. By their very definition, blockchains are used to

capture all financial operations related to a cryptoasset. That said, while they provide an abundance

of readily available data, much of that data is opaque or outright illegible. Most often, sourcing

on-chain data is insufficient— in order for it to be truly useful and insightful, it must first undergo

cleansing, normalization, and contextualization through variousmethodologies and supporting data

sets, all of which happen off-chain.

In this article, we’ll discuss one suchmethodology: a breakthrough in the field of mining data that has

enabled us to determine themarket share of everymajor machine, or ASIC, used tomine Bitcoin. This

is more than just an exercise in data analytics, though. By estimating the distribution of specific ASICs

used in Bitcoin mining over time, we can gainmore accurate insights into the Bitcoin mining industry

and bringmore objective data to the ongoing dialogue amongmining industry experts, Bitcoin users,

and policymakers.

Like CoinMetrics’ previousminer identificationmethodology, our findings and the resulting data set

are based on nonce analysis. The word "nonce" is short for "number used once" and it is essentially the

special number Bitcoin miners are searching for during themining process. As we previously

disclosed, there are patterns in those numbers that enable us to associate themwith specific ASIC

models.

However, unlike previous attempts at hardware fingerprinting, this methodology does not rely

heavily on circumstantial evidence like the timing of an ASIC release coinciding with the appearance

of a new pattern on-chain. Instead, this newmethodology incorporates off-chain data sourced

directly from real-world ASICs, making it more generalizable and thus reducing the barrier to

onboarding newmodel types. As a result, this newmethodology is more accurate and easily

extensible to newer hardwaremodels.

Whatmakes this data set particularly exciting is not only the ability to determine the predominance

of specific ASICsmining Bitcoin but also the plethora of additional metrics that can be derived from

that. Chief among thesemetrics is a substantially more accurate assessment of Bitcoin’s electricity

consumption, one of the industry’s most contentious topics. Previous attempts at assessing Bitcoin’s

power drawmissed a critical element that can only be attainedwith this type of ASIC-level data:

hardware efficiency. As themining industry has evolved, ASICs have become substantially more

efficient, generatingmore hashes per second and per unit of power drawn. That dynamic is not

captured fully by previousmethodologies, which at times leads to considerable overestimations of

power draw.
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What’s more, if you know the distribution of ASICs at a point in time, you can get a good idea of the

average efficiency, which is a keymetric for miners looking to assess the competitiveness of their

operations. Finally, we can use the hardware distribution to estimate the e-waste generated by

Bitcoin mining, yet another controversial topic.

What is a nonce, anyway?

Theword ‘mining’ has become ubiquitous when describing the process throughwhich new blocks are

appended to a blockchain and new coins are issued. The analogy is fitting: miners allocate resources

to this activity and, with some luck and adequate equipment, they are able to ‘extract’ new coins. The

analogy, however, is not very helpful in contextualizing what is actually happening under the hood,

andwhat miners are actually doing in this process. In order to understand that process more deeply,

perhaps another analogy would bemore appropriate.

Under the hood, what miners are doingmore closely resembles the work of a locksmith trying to

open a door for which there is no key. But instead of one locksmith, Bitcoin features thousands of

themwho are all simultaneously trying to produce a key that can open this door. Locksmiths with

more resources, such as specializedmachines, are able to produce keys faster and are thusmore

likely to find a valid key. Locksmiths can also join forces andwork together in teams, or pools, to
increase the likelihood of one of them finding a valid key.

In this analogy, the keys that locksmiths aremass producing are nonces. Depending on themachine

and process used to produce each key, that key will have a distinct pattern, perhaps in its shape or

material. These are essentially the patterns this analysis attempts to identify. In Bitcoin vernacular,

the key that is ultimately able to open the door is called a golden nonce. This key is sharedwith all
other locksmiths who can then verify if it in fact opens the door. If the door opens, the key itself is

proof that a locksmith has allocated resources to finding the correct one. This is why this process is

called Proof-of-Work.

Collecting and Parsing Nonces

As alluded to earlier, the backbone of this methodology are nonces sourced directly from real-world

Bitcoin ASICs (application-specific integrated circuit, or hardware built specifically for Bitcoin

mining). A wide range of models were used, including bleeding-edgeminers such as the S19XP and

theM50 (both released in 2022). In this initial version of the analysis, 11 different ASICmodels were
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considered, produced by 4 distinct manufacturers. They range in their release year, ability to

generate as many terahashes per second (TH/s) as possible, as well as their subsequent power draw

in kilowatts (kW). The table below shows the range of miner performance and power draw across the

models—and also allows us to see the distribution of ASIC electric efficiency (TH/s generated per kW
of power draw).While this analysis did not consider certain ASICmodels like Intel's Blockscale and

Bitfury's Clarke, they represent aminor portion of the overall network hashrate and their exclusion

does not substantially influence ourmethodology and final results.

FIG 1:Bitcoin ASICModel Specifications

Source: CoinMetrics, ASICMiner Value
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Eachmodel was then connected to a proxy pool running Luxor Relay, which intercepted and logged a

large sample of nonces generated by each ASIC. This is a substantial improvement over the previous

methodwe used to source nonces, which was limited tomined blocks. To put things into perspective,

consider that in a typical month, there are roughly 4 thousand unlabeled data points that can be

sourced on-chain, whereas this methodology allowed us to collect a dataset of over 27 thousand data

points, labeled by themodel that produced them.

Once nonces are collected, they need to be encoded, or converted, to different formats so that

patterns can bemore easily recognized. Each nonce is encoded using two distinct methods to store

data, namely, little-endian and big-endian notation. In essence, these are twoways to represent and

store data in computer memory. In big-endian representation, themost significant byte (the onewith

the highest value) is stored first whereas the least significant byte (the onewith the lowest value) is

stored last. To put it very simply, imagine you're reading a number out loud – in big-endian, you'd say

themost significant digit first (e.g. "three hundred and sixty-five"), while in little-endian you'd say the

least significant digit first (e.g. "five sixty-three hundred").

In Bitcoin, little-endian notation is widely used to represent data. Natively within the Bitcoin protocol

itself, nonces are a 32-bit unsigned (non-negative) integer that’s encoded in little-endian format. In

Stratum, themost used protocol for communications betweenminers andmining pool operators,

nonces are represented in hex format. These are basically different ways to represent numbers and

each has its own set of trade-offs. But as it turns out, representing nonce data using different

methods can expose different patterns hidden in the nonce.

There are several additional details around little and big-endian notation, but the general idea is

rather simple: in order to identify all possible ASIC patterns, each nonce is represented in two integer

dimensions: little-endian and big-endian. This method enables us to identify unique patterns using

either representation. Remarkably, we have found that, through this method, the overwhelming

majority of ASICs leave an identifiable pattern in at least one of these spaces, evenwhen different

operating systems are used.
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FIG 2:Nonce Patterns in Big-Endian (Left) and Little-Endian (Right)

Remember that the nonce is a 32-bit value. Each bit is binary – in each of the 32 bits that make up a

nonce, there can only be two values, either 0 or 1. This makes the universe of all possible nonces

equal to 2^32, which is a little less than 4.3 billion. Themagnitude of possible nonces ends up

complicating the process of pattern identification. For this reason, our methodology does not look for

patterns in the entire 32-bit space. Instead, we limit our search to the leading 7 bits of the nonce in

both big and little-endian space. This is equivalent to only evaluating the beginning of the nonce using

both little-endian and big-endian notation.

Doing so drastically reduces the universe of possible nonce values per dimension to 2^7 or 128,

which is a muchmore reasonable search field. You can think of this reduced search universe as 128

distinct groups or buckets. Every timewe produce a nonce using a specific ASICmodel, the 7 leading

bits of that nonce will fall into 1 of the 128 distinct buckets. Through this classificationmethod, we

have found that the very same ASICmodels tend to fall into the same bucket. Thus, there is a high

probability that nonces producedwith that pattern were produced by the identified ASIC. Our

hypothesis is that this pattern is intrinsic to the chip design used in that ASICmodel. As you can see

below, the patterns in eachmodel is distinct, either in big-endian or in little-endian.
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FIG 3:Buckets of ASICs in Big-Endian (left) and Little-Endian (right)

These patterns are generated at a hardware level by themining chip itself. Typically, multiple models

will be releasedwith the same chip, often with different performance or form factors (e.g. physical

size, shape, and configuration). For example, the S9, S9i, T9, and T9+ all use the same BM1387B chip

but are sold as different models.While our estimates of machine hashrate will technically track chip

dominance rather than rig dominance, we’ll refer to the fingerprints by the name of one of their more

commonmodels instead of the less-frequently-referenced chip name throughout this article for

convenience.

FromNonces toModel Hashrate

With ASIC fingerprints in hand, we’re now taskedwithmapping them to percentages of network

hashrate.We’ll use a technique called expectation-maximization (EM) to do this.Without going into

toomany of the details (see appendix for a formal specification of the analysis), we can gain an

intuition for EMwith a rough overview of the workflow.We start with an initial guess of the

distribution of ASICs, then at each time period, we look at the data and update our estimates based

on the likelihoodwewould see this data given our current estimate.With each iteration, we

eventually converge to a point within our pre-set tolerance level (0.1%) or hit themaximum number

of iterations of the algorithm.
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To estimate the likelihood that eachmodel could have produced the nonce, we perform the same

conversion and binning procedure as we did with the nonces from the share submissions.We then

calculate likelihoods in big- and little-endian space andmultiply them to reach our result, implicitly

assuming independence of the dimensions–which isn’t strictly true but is sufficient for our purposes.

FIG 4: Lower BoundDominance (%) of ASICModels with Control Group

As you can see, throughout our calculations, we also include a random uniform control term, whose

prior probability is set to a somewhat arbitrary value of 20% and resets at the start of every time

period. By attaching to noise in the nonce distribution, this term acts as a proxy for confidence in the

estimate: a large value indicates that our coverage isn’t representative, while a smaller valuemeans

that most hardware on the network is accounted for in ourmodel. Given that the percentage of

hashrate attributed to the control term generally trends down over time, we can see that most

hardwaremodels in the present day are accounted for in ourmodel.
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We’ll use this to set our confidence threshold dynamically, at 2.5% of 100%minus the control term,

zeroing out values that are smaller than this in our postprocessing andmoving them into the control

term. Ultimately, this gives us a lower bound estimate for the percentage of hashrate by hardware

type over time.

Keeping only the zeroed-out values in the control term as a proxy for unknown hardware, removing

the rest of the control, and normalizing the results gives us our best-guess estimate for network

hashrate bymodel:

FIG 5:Adjusted Dominance (%) of ASICModels

The distribution of models over time shows several interesting trends: Bitmain’s sustained

dominance in the hardwaremarket is the first thing to stick out. The surprising resilience of the S9,

which officially premiered in 2016 and only recently dropped below the threshold for detectability is

also notable. This can be contrasted with the rapid decline of the S17, a notoriously non-performant

machine with a large fraction of malfunctioning units due to a design flaw in its control board.
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Also of note is the rapid rise in dominance of the S19jPro and relatedmodels, in contrast to the

anemic initial growth of newermodels like the S19XP (which was overpriced for an extended period

after release and has also suffered from design flaws) and theM50 in the ongoing bear market.While

S19XP growth has ticked up lately, M50s remain below the tolerance level for detection. This plot can

also be represented in terms of total hashrate, whichmakes the gradual attrition in S9 dominance

evenmore visible.

FIG 6:Bitcoin Network Hashrate by HardwareModel

This metric is not without its flaws: in particular, it’s unreliable for models with very little hashrate

online, since these will mine fewer blocks and as a result won’t leave their characteristic fingerprints
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on the network as visibly. It’s also possible for it to pick up signals that aren’t necessarily there, for

example from theM50 prior to its release. Finally, its model coverage isn’t perfect, especially in the

distant past. Still, its results are broadly in line with analyst estimates, and it offers the first

continuous, comprehensive estimate for the network’s mining hardware distribution.

Toward aNetwork-Wide Average Efficiency

Bitcoinmining rigs vary substantially in the amount of hashpower they produce per watt of

electricity: as a general rule, newermodels aremore efficient than older ones.With our estimates for

the occurrence of each hardwaremodel, it’s straight-forward to estimate a network-wide average

efficiency bymultiplying the distribution bymanufacturer-specified hardware performance, giving us

an average value in J/TH.

FIG 7:Network-Wide Efficiency
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Aminer’s location on the efficiency curve is a major component in determining their profitability

under volatile market conditions. Having this information allowsminers tomake better decisions in

expanding, contracting, or relocating their operations.What’s more, without a good understanding of

what kinds of machines are running on the network and in what proportion, accurately estimating

aggregate energy consumption from hashrate is impossible.

In addition to the limitations with our ASIC distributionmethodology, our efficiency estimates are

constrained in their accuracy by not knowing exactly the conditions under which the chips are

hashing: for example, machinesmay be running custom firmware, or may be overclocked,

underclocked, or immersed, all of which would affect efficiency.We also can’t be sure of a specific

machine’s performance: models are typically sold under several different nameplate performances

based on their empirical performance, for example, S9s were sold in a range from 11.5TH to 14TH.

Finally, we can’t distinguish between relatedmodels likeM30Ss andM32s, which use the same chip

but have different performance profiles.

Estimating Electricity Consumption

While various teams have attempted to determine Bitcoin’s energy use, with the Cambridge Center

for Alternative Finance’s approachwidely deemed the gold standard, network-wideminer efficiency

was until now a bottleneck on accurate estimation. Cambridge’s power draw estimate is based on

evenly weightingmarginally-profitable hardwaremodels released in the last five years. This is a

relatively blunt tool: it’s deeply exposed to temporary fluctuations in bitcoin’s price, relies on the

assumption of a uniform network-wide electricity price, and isn’t particularly accurate during bull

markets. Still, the figures produced by Cambridge were groundbreaking, and themethodology

presented in this report is at its core a refinement of this existing work.

To derive an energy consumption estimate, we simply multiply the network-wide average efficiency

by network hashrate.We also include Power Usage Effectiveness (PUE) factors of 1.20 (upper

bound), 1.10 (average case) and 1.01 (lower bound) in our calculations, matching the figures used by

Cambridge.We estimate the network’s power draw at roughly 13.4 GW, or about 16% less than

Cambridge’s estimate of 15.9 GW for themonth ofMay 2023, the latest data available.
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FIG 8:Bitcoin Electricity Consumption with EfficiencyOverlay

This newermethodology has several advantages over the existing body of research, including the

Cambridge Bitcoin Electricity Consumption Index. Because these new results include amodel

hardware composition, the resulting energy consumption figures are also substantially more

accurate than existing estimates. Themodel is the first that doesn’t factor in the price of bitcoin as an

input, which renders it much less volatile; it also doesn’t require a network-wide energy price as an

input, which is an oversimplification and can be difficult to estimate.
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FIG 9:Comparison of Bitcoin Electricity Consumption Estimates

The limitations of our hardware distribution and efficiency estimates carry over into this model, and

the PUE bounds are quite wide. Still, it provides a significant improvement over the current state of

the art, especially during bull markets, when price can dislocate significantly from actual network

conditions.
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E-Waste Estimation

Another conversation point, thoughwithout much high-quality research behind it, has been the

e-waste generated by Bitcoin mining (while most of the body of amining rig is aluminum, and

therefore is recyclable and doesn’t actually qualify as e-waste, we’ll adopt that terminology since it’s

become the standard in the industry).With our hardware distribution, we can come upwith a simple

heuristic to estimate e-waste: after the then-all-time-high hashrate produced by a certain type of

hardware, assume every drop is caused bymachines falling permanently offline; then, compare this

figure to themanufacturer-specified hashrate andweight per machine to see howmuch e-waste has

been produced:

FIG 10:Assessment of ASICs Discarded
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In some regards, this methodology overestimates e-waste, sincemining hardware can and does come

back online whenmarket conditions have improved or after exogenous shocks like the Chinese

mining ban have resolved. That said, this naivemethodology does not account for internal churn: for

example, one S19jPro could fail, be thrown out, and be replaced by another. However, even adopting

an aggressive 2.78%monthly churn in online hardware corresponding to a 3-year depreciation

schedule, the plot looks very similar:

FIG 11:Assessment of ASICs Discarded, 3-Year Depreciation

Themajor blind spot with this methodology, in addition to the shortcomings in determining the

network hardware distribution, is that somemachines aremanufactured but never plugged in in the

first place. Estimating this value would likely require production figures from themanufacturers

themselves.
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Conclusion

In this post, we introduced a newmethodology to fingerprint the predominance of each of themajor

ASICs in Bitcoin over time.We hope this data can shed some light onwidely-debated topics within

Bitcoin, such as its electricity consumption, resulting carbon footprint, and e-waste production. Given

the importance of ASICs in the security of Bitcoin, we also hope this data can help contextualize

security in Bitcoin over time. Finally, we hope this data set helps informminers about where they sit

on the efficiency curve, which can in turn function as a benchmark.
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Technical Appendix 1

Formal Specification of Bitcoin Nonce Analysis

Alex R. Mead

Introduction

This Appendix attempts to layout a formal specification for the complete process of ASIC proportion
estimation presented here.

The appendix is divided into several parts, including: characterization of each ASIC used in min-
ing (Section 1 and 3), characterization of the Bitcoin blockchain data (Section 2), and a detailed
explanation of the Expectation-Maximization (EM) Algorithm (Section 4).

1 Application Specific Integrated Circuits (ASICs)

The ASIC chips1 considered in this analysis are represented by the set,

ASICs = {s9, m20s, m32, m50, 1066, 1246, e12+, s17, s19, s19jpro, s19xp}. (1)

A single ASIC is referred to as asic ∈ ASICs, for example asic = s9. For this analysis, each asic ∈
ASICs has corresponding manufacturer specifications, expressed here as the function,

asic specs : ASICs −→ specs, (2)

where,

specs = “key:value set” = {
“power draw” : [Joules @ 100% operation],
“hash rate” : [terahash],
“release date” : [YYYY-MM-DD],
“weight” : [kg]
“efficiency” : [Joules/terahash]
“weight efficiency” : [kg/terahash] }.

2 Bitcoin Data

The Bitcoin chain with the “most work” is referred to here as B. However, the analysis is done on a
continuous subset, B ⊂ B, from height Bmin = 529, 967 to Bmax = 792, 268 [July 1, 2018 - May 31,
2023].

1ASIC chips are often refereed to as ‘miners’.
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For this analysis, an individual block, b ∈ B is a 4-tuple defined as,

b = (height, timestamp, difficulty, nonce), (3)

where,

height = “standard Bitcoin notion of block height from genesis”
timestamp = “UTC consensus timestamp”
difficulty = “network mining difficulty, updated every 2016 blocks”
nonce = “4-byte (32-bit) value, the solution of mining.”

Examining the nonce, we partition it into its base four bytes, where,

nonce = [ byte0 | byte1 | byte2 | byte3 ]. (4)

with,

byte0 = “the lowest addressed byte of nonce in memory”
and

byte3 = “the highest addressed byte of nonce in memory”

with the notational convenience of nonce0 = byte0, . . . , nonce3 = byte3.

2.1 Key Nonce Observation

The nonce can be thought of as a random variable with a corresponding probability density function
(pdf) of the form,

pdfnonce : nonce×ASICs −→ [0, 1], (5)

written equivalently in standardized stochastic nomenclature as,

IP(nonce | asic) = “given an asic made the nonce it did so with this probability′′. (6)

A key observation of this work is the nonce can be separated into two, independent random variables.
These random variables are byte0 and byte3 of the nonce itself, expressed as nonce0 and nonce3.

One can verify this independence themselves by examining B and plotting nonce0 versus nonce3 on
an X-Y plane. The points form a non-patterned cloud, exactly as expected for independent variables.
Further, the authors conducted several statistical analysis, including correlation and Pearson tests, to
examine the independence claim more rigorously. Further validation of this claim can be provided on
request.

Thus, for each nonce, we have two random variables and their corresponding marginal pdf’s can be
expressed as,

IPnonce0(nonce0 | asic) and IPnonce3(nonce3 | asic) (7)

With nonce0 and nonce3 being independent variables, we can now get the joint density function via
the well known general relationship of pdf’s (i.e. IP(A ∩B) = IP(A)IP(B)) as,

IP(nonce0, nonce3 | asic) = IPnonce0(nonce0 | asic)IPnonce3(nonce3 | asic). (8)
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2.2 Practical Nonce Processing

Practically speaking, nonce0 and nonce3 can be “extracted” from the observed nonce by using a simple
two step procedure. First, using both a big and little endian encoding, the uint32 representation of
the 4-byte nonce is calculated, noncebe, noncele ∈ [0, 4, 294, 967, 295]. Next, a “binning” process is
used to group the respective integers into 128 evenly spaced “buckets.” That is, for some u ∈ uint32,
buckets are defined as,

buckets = {
bucket0 = {u | u ∈ [0, 232

128 )},
bucket1 = {u | u ∈ [ 2

32

128 , 2
232

128 )},
. . .

bucket127 = {u | u ∈ [127 232

128 , 2
32)}

}

and the random variable of interest is “compressed” to an integer with value 0, . . . , 127.
Depending on the encoding of big or little endian for u ∈ uint32, two sets of buckets exist,

bucketsbe and bucketle. (9)

Now, we introduce a function bin to return the name of a bucket given a nonce as,

bin : nonce× {be, le} −→ bucketsei , (10)

where e ∈ {be, le}, i ∈ 0, . . . , 127 and bucketsei is not the bucket itself, but the bucket’s unique identifier.
This function can can then be used to organize a set of nonces into their respective buckets or used
with a single nonce to determine it’s nonce0 and nonce3 “compressed” integer representation by simply
looking at the integer of the bucket this function returns for a given nonce and its encoding e ∈ {be, le}.

Careful examination of bucketsbe for a nonce derived with a big endian encoding will in fact reveal
itself as nonce0 from the observed nonce. Similarly, for a little endian encoding for a nonce, bucketsle

is in fact nonce3.

Note: the attuned reader will observe the buckets only use bits 1-7 of nonce0 and nonce3, not the full
bits 0-7.

It should also be noted: nonce0 and nonce3 can be accessed in an equally valid manner by bit-masking
and bit-shifting. The presented big and little endian interpretation is provided for both historical
reasons (i.e. how the author’s “discovered” the nonce patterns) and because it can be easier for some
readers to think in integers and binning than bits and bytes.

With the nonce formally described and interpreted as two independent random variables, the next
step is to express their respective pdf’s based on measured data.

3 ASICs Training Data

For each asic ∈ ASICs, a large set of nonces were generated in a simulated mining environment2.
This process created a set of labeled nonces for each asic which are now used as training data for
the estimation of the respective probability distribution functions (pdf’s). These sets of nonces can be
described ∀ asic ∈ AISCs as,

noncesasic = {nonce | “nonce was made by asic′′}. (11)

The process of building the respective pdfs starts by using the helper function 10 defined above, these
sets of nonces are “binned” to create their respective sets of “buckets,” bucketsbeasic and bucketsleasic.
Recall from above, the sets of “binned” nonces in reality represent the random variable of the first and

2Technically speaking this was a “live” mining operation in the B mining network.
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fourth byte (i.e. nonce0, nonce3) produced by a respective miner and are now in a labeled set.

Next, bucketbeasic and bucketleasic are used to create the marginal pdf’s defined above in equation 7.
Recall, big endian (be) is nonce0 and little endian (le) is nonce3. This means, the marginal pdf for
nonce0 which can be represented by some “compressed” integer j ∈ 0, . . . , 127, for a given asic ∈
ASICs can be defined as,

IPbe
asic(j) =

|bucketsbeasic,j |∑127
i=0 |bucketsbeasic,i|

, (12)

where bucketsbeasic,i, buckets
be
asic,j represents bucketi, bucketj ∈ bucketbeasic. Intuitively, this is the pro-

portion of times a specific asic ∈ ASICs made a nonce with nonce0 = j divided by the total number
of nonces made by that asic in the training data. Thus, the marginal pdf for each asic is derived using
a simple proportion of each type of nonce as compared to the total number of nonces made in the
training data.

This process is repeated for both nonce0 and nonce3 (i.e. big and little endian “binning” respectfully),
as well as for each asic. Taken in total, this produces a set of two marginal pdfs for each ASIC
considered, which we refer to moving forwards as,

IPbe
asic(nonce

be) and IPle
asic(nonce

le) (13)

where asic ∈ ASICs.

3.1 Control Group

For reasons that will become clear in the analysis presented below, a final pdf is added as a “con-
trol” term. This control term is a uniform random variable, as opposed to the previous empirically
defined pdfs. Intuitively this can be thought of as a “collector” for any blocks not produced by an
asic ∈ ASICs which has been measured for this analysis.

Practically, this results in the expansion of the set ASICs to include control and the definition of two
pdfs, IPbe

control and IPle
control. Due to their uniformity, ∀ nonce,

IPbe
control(nonce

be) = IPle
control(nonce

le) =
1

128
(14)

4 Expectation-Maximization Algorithm

The details of the block data set partitioning and subsequent ASIC proportion estimation are described
next.

4.1 Partitioning the Blockchain Data

To begin, the continuous subset B ⊂ B is first partitioned into “windows” based on the calendar month
of each block’s respective UTC timestamp3. For this analysis, non-overlapping window lengths of one
month are used, however, other window lengths are also valid. For B, these windows can be expressed
formally as,

windows = {
windowJul2018 = { ∀ b ∈ B | b.timestamp ∈ ‘July 2018’ },
windowAug2018 = { ∀ b ∈ B | b.timestamp ∈ ‘August 2018’ },

. . .
windowMay2023 = { ∀ b ∈ B | b.timestamp ∈ ‘May 2023’ }

},
3See section 2 above for formal definitions of B, B ⊂ B, and b ∈ B.
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where, ⋃
windows

window = B and
⋂

windows

window = {}. (15)

Intuitively, this means we assume the proportion of ASIC chips used on the network does not change
within a month, only between months. While this is clearly not true in general, the difficulty changes
approximately every 2 weeks - and is still “agile” enough to match the hashrate network changes -
which gives us faith the one month window is appropriate 4.

4.2 Running the Algorithm

With all of the above machinery in place (i.e. pdfs in Section 3 and now the partitioned blockchain
data), the asic proportionality estimation can finally be explained.

4.2.1 Initial Conditions

The first step in the EM Algorithm is to provide an initial “guess” as to the distribution we are
estimating. That is, what proportion of the Bitcoin Mining Network hashrate is currently made up by
each asic ∈ ASICs. These values are encoded in a vector, weights ∈ [0, 1]|ASICs|, such that,∑

w∈weights

w = 1 (16)

Further algorithm parameters are also specified, including:

depth = “maximum iterations used in estimation-maximization” = 30
delta = “percentage change threshold for convergence” = 0.1 %

4.2.2 Expectation-Maximization Algorithm

Changing gears from set-theory formalisms, the EM-Algorithm will be presented using a Pythonic
syntax. The goal here is to explicitly define the mathematics used in the estimate.

We begin by looping over each window ∈ windows,

Looping Over Windows

1 windows = [window_Jul2018 , window_Aug2018 , ..., window_May2023]

2 asic_estimates = [] # Container for stored estimates

3 weight_initial = [0.69 , 0.01 ,..., 0.01, 0.2] # Initial Guess

4

5 for window in windows:

6 # Estimate for the current window.

7 weight_estimate = em_algorithm(weight_initial , window , depth=30, delta =0.001)

8

9 # Filter weight estimation.

10 weight_final = filter_weights(window , weight_estimate , weight_initial , asic_spec)

11

12 # Store estimate for post processing.

13 asic_estimates.append(weight_final)

14

15 # Use current window as initial condition of next window.

16 weight_initial = weight_final

4To jump ahead, one month window results match intuition as well as other estimates within reason. Lending more
evidence this assumption is valid.
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With the high level iterative process shown above, the actual estimation process is show here:

Expectation-Maximization Within Each Window

1 def em_algorithm(weight_initial , window , depth , delta):

2 """ Recursive EM Implementation."""

3 # Marginal Probabilities

4 pdf_be_mar = [ [ asic.pdf_be(block.nonce) for asic in ASICs ] \

5 for block in window ]

6 pdf_le_mar = [ [ asic.pdf_le(block.nonce) for asic in ASICs ] \

7 for block in window ]

8

9 # Joint Probabilities

10 pdf_jnt = [ [pdf_be_blk_asic * pdf_le_mar[idx_pdf_be_blk ][ idx_pdf_be_blk_asic] \

11 for idx_pdf_be_blk_asic , pdf_be_blk_asic in enumerate(pdf_be_blk)] \

12 for idx_pdf_be_blk , pdf_be_blk in enumerate(pdf_be_mar)]

13 # Expectation

14 observed = []

15 for block_est in pdf_jnt:

16 for idx , asic_est in enumerate(block_est):

17 asic_est = (asic_est * weight_initial[idx]) \

18 / dot(block_est , weight_initial) # Dot product

19 observed.append(block_est)

20

21 # Weight by block difficulty

22 for idx , block_est in enumerate(observed):

23 difficulty = window[idx]. difficulty

24 for asic_est in block_est:

25 asic_est = asic_est * difficulty

26

27 # Average each block in the window

28 average_asic_est = zeros(len(ASICs))

29 for block_est in observed:

30 for idx , asic_est in enumerate(block_est):

31 average_asic_est[idx] += asic_est

32 for avg in average_asic_est:

33 avg = avg / len(observed)

34

35 # Normalize estimate

36 weight = [ avg / sum(average_asic_est) for avg in average_asic_est ]

37

38 # Recursion -or- Exit conditions

39 if depth == 0 or vector_converge(weight_initial , weight , delta):

40 return weight

41 else:

42 return em_algorithm(weight , window , depth=depth -1, delta=delta)
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Finally, two functions used within EM are presented:
First, the convergence criteria for the estimation vector, second, the “re-set” procedure for each window
estimate:

Converge Criteria

1 def vector_converge(weight_initial , weight_new , delta):

2 """ Convergence check on ASIC proportional estimate."""

3 converged = True

4 for idx , weight in weight_initial:

5 if abs(weight - weight_new[idx]) > delta:

6 converged = False

7 return converged

Estimation Re-Set

1 def filter_weights(window , weight_estimate , weight_initial , asic_spec):

2 """ Adjust estimates after EM convergence for next round """

3 weight_final = zeros(len(ASICs))

4

5 # Reset control weight for every window

6 weight_estimate[’control ’] = 0

7 weight_final[’control ’] = weight_initial[’control ’]

8

9 # If asic not publically released for more than 1 year

10 for asic in ASICs:

11 if asic_spec(’release_data ’) > window.month - 1_year:

12 weight_estimate[asic] = 0 # asics to re -set

13 weight_final[asic] = weight_initial[asic] # value asics are re-set to.

14

15 # Normalize weights within vector , normalize vector between vectors , then

addition.

16 weight_final = normalize(weight_estimate) * (1 - sum(weight_final)) + weight_final

17

18 # Return value for next round.

19 return weight_final

4.2.3 Examples of Variable Values

For the reader’s convenience, some variables presented in the algorithm are expressed in a more clear
syntax below.

Joint Probability Function for Nonces

∀ window ∈ windows = {windowJul2018, . . . , windowMay2023}, and
∀ blk ∈ window = {blk0, . . . , blkn},

where blki.n is the nonce value

pdf jnt =




IPbe
s9(blk0.n

be)IPle
s9(blk0.n

le)

IPbe
m20s(blk0.n

be)IPle
m20s(blk0.n

le)
. . .

IPbe
control(blk0.n

be)IPle
control(blk0.n

le)

 , . . . ,


IPbe

s9(blkn.n
be)IPle

s9(blkn.n
le)

IPbe
m20s(blkn.n

be)IPle
m20s(blkn.n

le)
. . .

IPbe
control(blkn.n

be)IPle
control(blkn.n

le)




Intuitively, each vector in pdf jnt is a block and each row in the respective vectors are the pdf estimation
for each asic ∈ ASICs, including the control term.
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